
AD-A195 793 1/1 UNCLASSIFIED NL BEE Z

POLYFUNCTIONALISATION OF CAGE HYDROCARBONS

Second Interim Report

by

Prof. Dr. Paul von Rague Schleyer

March 1988

United States Army
European Research Office of the U.S. Army
London, England.

Contract Number DAJA 45-87-M-0526

Institut fuer Organische Chemie Universitaet Erlangen-Nurnberg Henkestrasse 42 D-8520 Erlangen Federal Republic of Germany

Accessor For	· · ·
NTIS CRA&I DTIC TAB Undannour ded Justineamon	ט
By form 50 Distribut or 1	<i>V</i> .
Dot speci	I (O)
1 40 4 1	

Reporting this document has been made possible through the support and sponsorship of the US Government through its European Research Office and the US Army. This report is intended only for the Internal management use of the contracting US Covernment.

Approved for public released
Distribution Unlimited

INTRODUCTION.

This report outlines the work being carried at the University of Erlangen-Nurnberg aimed at the synthesis of polyhalogenated cage molecules, their isolation, characterisation, and assessment as potential pre-cursors to "high density" materials.

The progress in this field up to 31/3/88 is reported herein and intended future work is

described.

The "cage" systems studied are adamantane $(C_{10}H_{16})$, diamantane $(C_{14}H_{20})$, and norbornadiene-dimer $(C_{14}H_{16})$ (NBD).

CONTENTS.

(I) Photobromination of 1,3,5,7-tetrabromoadamantane (AdBr₄).

(II) Photochlorination of AdBr₄.

(III) Photochlorination of adamantane and 1,3,5,7-tetrachloroadamantane. (AdCl₄).

(IV) Chlorination of diamantane.

(V) Chlorination of NBD.

(VI) Ionic bromination of diamantane.

(VII) Conclusions and intended further work.

(I) Bromination of AdBr4.

A variety of different methods have been employed all without success, the AdBr₄ remaining unreacted. The methods attempted are shown in the scheme below.

CARL KIND IN THE STATE OF THE PROPERTY OF

- (1a) AdBr₄ + Br₂ + CCl₄ ----hv RT-----> no reaction
- (1b) As above + N=NC(CH₃)₂CN ---h\(\nu\) RT-----> no reaction
- (3) AdBr₄ + NBS + dibenzoylperoxide ----heat--> no reaction
- (4) AdBr₄ +Br₂ + HgO ----CCl₄ heat ---> no reaction
- (5) AdBr₄ + Br₂ + HgO ---BrCl₃C--hν→ no reaction

(II) Photochlorination of AdBr4.

On short term photochlorination, typically 30-60 mins., a total halogen content of 8 or 9 is achieved.

(1)
$$AdBr_4$$
 ----- Cl_2 -- $h\nu$ ----> $AdBr_4Cl_4$ + $AdBr_4Cl_5$

On longer photolysis, up to 3 days, a higher halogen content is obtained. This product is not yet fully analysed but from ¹H NMR is estimated to contain a total halogen content of around 12.

(2)
$$AdBr_4$$
 ----- Cl_2 -- $h\nu$ -> $AdBr_4Cl_7$
¹H nmr(m.4.0, m.6.1ppm)

(III) Photochlorination of Adamantane.

20hrs, photochlorination results, after work up, in a product mixture of the following composition:

 $C_{10}Cl_{12}H_4$ 68%, $C_{10}Cl_{13}H_3$ 29%, $C_{10}Cl_{14}H_2$ 3%.

This composition is calculated by comparing the peak intensities for the (M-Cl)⁺ ions. (The M⁺ peaks are very weak for these compounds). The mixture exhibits the ¹H nmr spectrum; (m,3.65, m,6.0ppm)

Chlorination of Tetrachloroadamantane AdCl.

Short term photolysis results in the formation of AdCl₆ and AdCl₆ which together exhibit the ¹H nmr spectrum (m,3.3, m,5.2ppm).

Photolysis for 52hrs results in further chlorination, the product found by mass spec. to be a mixture of Cl₁₁,Cl₁₂,Cl₁₃ and Cl₁₄ compounds. This mixture exhibits the ¹H nmr spectrum (m,3.6 CH₂, m,5.8 CHCl).

Partial evaporation of a solution of this mixture in Et_2O results in crystallisation. X-Ray analysis of these crystals reveals that they belong to the Cubic system but also that they are severely disordered indicating the probability that the very similar packing properties of the Cl_{11} - Cl_{14} compounds allow them to crystallise together. Further X-Ray analysis on these crystals was therefore impossible due to the disorder. Mass spec. analysis of these crystals indicates the following approximate composition:

AdCl₁₂H₄ 49%, AdCl₁₃H₃ 38%, AdCl₁₄H₂ 13%.

The 400MHz ¹H nmr spectrum is provided (spec.1)

HPLC separation of this crystalline mixture using petrolether/Et₂O 95:5 %vol gives two distinct fractions(1 and 3) which were at first thought to be only mixtures enriched in one or other chloroadamantane. It now seems more probable that the two fractions, although exhibiting similar mixture compositions, in fact contain distinct isomers of these components.

The compositions of the fractions, estimated by comparison of the intensities of the (M-Cl)⁺ peaks in the mass spectra, are as follows;

FRACTION 1	COMPOUND	FRACTION 3
39%	AdH ₄ Cl ₁₂	46%
35%	AdH ₃ Cl ₁₃	54%
26%	AdH,Cl,4	

In both fractions, the compounds of molecular formula AdH₄Cl₁₂ and AdH₃Cl₁₃ are major components and present in fairly equal amounts. The 400MHz ¹H nmr spectra of these two fractions are, however, very different. Spectra provided (spec.2 and spec.3).

The spectrum for fraction 1 (spec.2) exhibits many resonances in the region which corresponds to the R₂CHCl function (~6.0ppm) and also a few less intense peaks in the R₂CH₂ region.

All of these peaks are absent from the spectrum of fraction 3 (spec.3). An explanation of this is that fraction 1 contains mainly those isomers of the $\text{Cl}_{12},\text{Cl}_{13}$ and Cl_{14} compounds which contain no R_2CH_2 groups. This is consistant with the fact that these isomers have inherently lower dipoles than those not containing such groups, and therefore would be eluted first in the HPLC by the non-polar solvent.

As mentioned, only fraction 1 contains the $AdCl_{14}H_2$ isomers all of which probably contain no R_2CH_2 groups. Fraction 3, on the other hand, contains those isomers of $AdCl_{12}H_4$ and $AdCl_{13}H_3$ which do contain a R_2CH_2 group. These have fewer isomeric possibilities. This fact and the absence of $AdCl_{14}H_2$ combine to greatly simplify the nmr spectrum (spec.3).

Semi empirical molecular mechanics (MNDO) calculations on the isomers of AdCl₁₂H₄ containing no R₂CH₂ groups show the following;

ISOMER RELATIVE ENERGY Kcal/Mol.

C,	0.0
S ₄	1.0
C _{2v}	1.9
all C ₁	>6.8

These results clearly show that the C_1 isomers are energetically disfavoured and this agrees with both the ¹H and ¹⁸C spectra (spec.2 & 4) which do not contain enough peaks for the C_1 isomers to be accounted for.

The C_e , S_4 , and C_{2v} isomers could conceivably all be produced although in differing amounts. This also agrees with the spectral data.

More detailed calculations on these isomers and on those containing R_2CH_2 groups could help identify those isomers formed in preference, which can only be decided unambiguously by X-Ray analysis, which, as mentioned earlier, poses problems in crystal growth due to the similarity in the packing characteristics of these spherically shaped molecules.

(IV)Chlorination of diamantane.

<u>Ionic chlorination</u> of diamantane using AlCl₃ results in the formation of C₁₄H₁₆Cl₄ which is highly insoluble in anything except THF.

<u>Photochlorination of diamantane</u>, for approximately 24hrs results in a mixture of the following estimated composition (mass spec.).

$$C_{14}H_{10}Cl_{10}$$
 45%, $C_{14}H_{9}Cl_{11}$ 45%, $C_{14}H_{8}Cl_{12}$ 9%, $C_{14}H_{7}Cl_{13}$ 1%.

(V) Chlorination of norbornadiene dimer (NBD) (C₁₄H₁₆)

<u>Ionic chlorination</u> of NBD results in products in the Cl₄-Cl₇ range. The composition estimated from the mass spectrum is as follows;

<u>Photochlorination of NBD.</u> proceeds somewhat further yielding compounds in the Cl₈-Cl₁₀ range.Composition estimate from mass spec. is as follows:

$$C_{14}H_8Cl_8$$
 6.5%, $C_{14}H_7Cl_9$ 81%, $C_{14}H_6Cl_{10}$ 12.5%.

The Cl₉ compound precipitates from the reaction. The Cl₈ compound can be obtained in 92% purity by filtering off the Cl₉ compound and working up.

(VI) Bromination of diamantane.

A selective method for the synthesis of 4,9-dibromodiamantane from diamantane in 85% yield has been developed.

$$C_{14}H_{20} + Br_2 + Fe ---RT 2hrs----> C_{14}H_{18}Br_2$$

This compound may prove to be a more suitable starting point than tetrabromodiamantane, for further halogenation, due to its higher solubility in the solvents usually employed in photo-halogenations.

(x) Conclusions and intended future work.

Chlorination of adamantane has now succeeded in producing major products in the Cl₁₂-Cl₁₄ range which corresponds to over 75% functionalisation.

Partial separation of the isomers produced has been achieved by HPLC in quantities which allow analysis by 400MHz ¹H nmr.

It has not yet been possible to separate the Cl₁₂ and Cl₁₃ compounds by this method but separation of the isomers of these compounds which contain unfunctionalised R₂CH₂ groups from those which do not, has been achieved. Further identification requires larger quantities of separated isomers for ¹³C and ¹³C-¹H shift correllated spectroscopy.

Reversed phase HPLC could be useful in separating AdCl₁₂ and AdCl₁₃ from pre-separated

R₂CH₂ containing, and non-containing isomer mixtures.

Further MNDO calculations on the various isomers of AdCl₁₂, AdCl₁₃, and AdCl₁₄ will aid identification of preferentially formed isomers. The growth of crystals suitable for X-Ray analysis is being actively pursued.

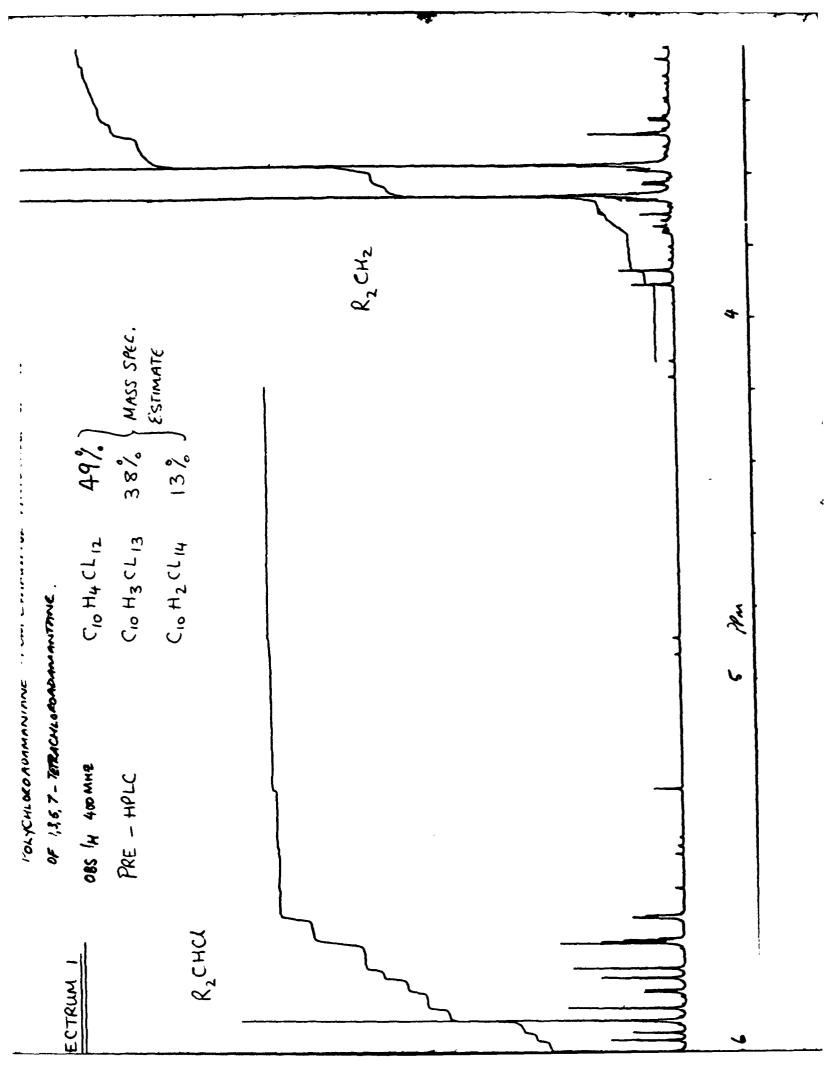
Photochlorination of AdCl₄ also proceeds to the Cl₁₂-Cl₁₄ range. It is not yet clear whether the isomeric distribution here is the same as it is in the case of directly photochlorinated adamantane. Again samples are being purified for ¹³C and ¹³C-¹H correlated nmr spectroscopy.

Photobromination has been somewhat less successful, with the attempted bromination of pre-halogenated adamantanes not proceeding at all, and that of adamantane only to the Br₃-Br₅ range.

Chlorination of other cage systems, diamantane, and NBD has also proceeded well, products in the Cl₁₂-Cl₁₄ and Cl₇-Cl₉ ranges being produced respectively. This corresponds to 70% and 50% functionalisation.

Photochlorination of ionically brominated cages has begun with initial experiments yielding AdBr₄Cl₄-AdBr₄Cl₆ compounds which appear to be more amenable as far as crystallisation is concerned.

Two computer programs have been written which significantly simplify the interpretation of the mass spectra of these highly halogenated and mixed halogen compounds.


Methods of halogen exchange (from Cl or Br to I) are being investigated with some success.

Scientific personnel involved in this work:

Prof. Dr. P.v.R. Schleyer (Principal Investigator)

Dr. Peter Gregory (post doctoral associate)

Erlangen, April 6, 1988

RESOL 0.310000 RESOL EXREF -0.000000 08: -2305.60 713 AB065 24. 6000000 KHE COMMIT 85095/P. GREGORY/CL-ADAMANTANE/CDCL3/1H/H5/+24DEG FREG(Hz) BAR GRAPH INTIA POSITION NO. 5893 7.52210 7.26332 0.07589 3007.20 2403.75 2 3 CHU3 7511 7590 . 26699 0.18926 2513.43 6.22648 6.21523 0.07961 2489.32 2484.76 7605 1.07743 2466.13 7660 7709 6.16867 2453.DO 6.13584 0.15178 0.24379 7735 6.11600 2445.07 • 6.10378 0.07267 2440.19 7751 6.09386 2436.22 2433.78 7766 10 0.09826 0.09212 7772 11 6.05364 0.11009 2420.96 7814 2416.69 13 6.04500 0.71671 7828 6.04145 0.22613 7832 14 15 6.03050 2410.89 7847 7.66135 16 17 6.02363 0.21194 2408.14 7856 R2CHCE 6.01905 2406.31 7862 18 6.01371 0.08142 2404.17 7869 7893 19 1.50144 5. 99539 2396.25 5. 97401 7921 2388.31 5.95188 0.18569 2379.46 7950 22 23 2374.88 5 94043 8.83748 7965 5.92898 0.15134 7980 5.90684 2.32709 8009 2361.45 25 5.87325 0.11562 2343 92 2343,75 8053 8067 5.86256 0.84685 26 5.85722 0.83090 2341.61 8074 28 29 30 5.82287 1.66055 2327.88 8119 2322.08 5.80836 0.07892 8138 5.79615 5.75966 2.21793 2317.20 8154 31 32 2294.62 2289.73 0.10553 8228 5, 72745 8244 2.46002 33 5.72287 1.65931 2287.90 8250 34 35 5, 71905 . 22502 2286,38 8255 5.71447 U. 50939 2284.55 8261 36 37 5.65722 1.03666 2261.66 8336 5.65340 0.64309 2260.13 2259.52 8341 0.79604 8343 5.65188 38 39 5.64348 0.08886 2256.16 8354 2229.61 2191.77 40 5.57707 0.18735 8441 0.17256 8565 41 5.48241 5.46180 2183.53 8592 43 5.45951 0.12049 2182.62 2173.16 8595 44 45 5. 43585 8626 0.58185 8802 5.30150 0.12530 0.15218 46 4.93051 1971.13 9288 1953.13 9347 4.88547 1665.04 10291 48 4.16486 49 50 4,11982 0.12804 1647.03 10350 0.85329 1561.58 10630 51 3.86715 1.09685 1546.02 10681 52 53 54 3.83891 0.11375 1534.73 10718 1520.08 10766 3.80227 0.20836 1503.91 10819 3.76181 0.14256 0.19437 55 3.75952 1502.99 10822 3.75494 10825 1501.16 56 57 0.14359 1499.63 10833 3.76502 1497, 19 58 59 0.38807 10841 3.73891 0.15056 1494.75 10849 60 3.72822 0.23019 1490.48 10863 61 62 63 3.71067 3.68853 0.65117 0.10376 1483.46 10886 10915 1676.61 3.68242 0.08788 1472.17 10923 64 65 3.67174 3.66563 0.92214 1467.90 10937 1.33818 10945 1465.45 66 67 68 69 70 71 72 73 74 75 3.65952 15.65355 1463.01 10953 10963 3.65189 3.62746 0.86309 1459.96 D. 60119 O. 56634 O. 10793 O. 54759 1480.20 1447.75 1443.79 10995 R2CH2 3.62135 3.61143 3.59158 11016 1435.85 11042 3.58929 0.90133 1434.94 11045 3.58700 0.65789 1434.02 11048 3.57555 16.56562 1629.66 11063 3.56868 0. 93355 1426.70 11104 76 77 3.54426 0.14219 1416.93 3.53891 0.12695 1616.79 11111 0.16527 78 79 40 81 82 83 3.52288 3.51754 3.49006 0.08055 11139 406.25 1395.26 11182 11194 11225 3.48471 0.68254 1393.13 3.45189 3.44685 3.44044 3.40181 3.39238 3.34648 0.43288 1380.00 11225 11232 11240 11291 11303 84 85 0.46347 1379.43 1359.86 1356.20 1346.74 1348.83 0.16844 0.13010 847 0.14425 07343 11334 11337

زع

```
RESOL
            0.0007754 ppm
EXREF
            0.000000 ppm
             -2306.21
                         HZ
085
ABOBS 399784.8000000 KHz
NGAIN
                    14
COMNT #5284/GREGORY/1/CDCL3/1H/C5/+24DEG/SGNON/SCH
NO.
                PPM
                          INT(%)
                                        FREQ(Hz)
                                                   POSITION
                                                               BAR GRAPH
           7.26561
  1
                         5.49368
                                         2904.66
                                                        6231
                                                                         CHCLZ
  2
           6.17630
                         0.66949
                                         2469.18
                                                        7658
                                         2419.13
  3
           6.05111
                         0.68401
                                                        7822
  4
           6.03813
                         6.27609
                                         2413.94
                                                        7839
                                                                       R, CHCL
  5
           6.00226
                         0.69371
                                         2399.60
                                                        7886
  6
           5.98165
                         1.22259
                                         2391.36
                                                        7913
  7
           5.87020
                         0.65814
                                         2346.80
                                                        8059
  8
           5.86409
                         0.69479
                                         2344.36
                                                        8067
  9
           5.82898
                         2.15283
                                         2330.32
                                                        8113
 10
           5.80302
                         0.94313
                                         2319.95
                                                        8147
 11
           5.73432
                         1.85953
                                         2292.48
                                                        8237
 12
           5.72669
                         0.79241
                                         2289.43
                                                        8247
 13
           5.66333
                         1.43001
                                         2264.10
                                                        8330
           5.65875
                         0.89304
 14
                                         2262.27
                                                        8336
 15
           5.30302
                         1.71058
                                         2120.06
                                                        8802
 16
           3.90990
                         0.57573
                                         1563.11
                                                       10627
 17
           3.87173
                         0.73602
                                         1547.85
                                                       10677
 18
           3.71372
                         0.65704
                                                       10884
                                         1484.68
 19
           3.67555
                         0.85458
                                         1469.42
                                                       10934
           3.67097
 20
                         0.46937
                                         1467.59
                                                       10940
 21
           3.66487
                         0.45714
                                         1465.15
                                                       10948
 22
           3.59235
                         0.72266
                                         1436.16
                                                       11043
 23
                                                                R, CH,
           3.49464
                         0.47613
                                         1397.09
                                                       11171
 24
           3.48929
                         0.51757
                                         1394.96
                                                       11178
           2.34045
  ز
                         0.55242
                                          935.67
                                                       12683
 26
           2.33052
                         0.53226
                                          931.70
                                                       12696
 27
           2.21449
                         0.96716
                                          885.31
                                                       12848
 28
           2.17403
                       100.00000
                                          869.14
                                                       12901
                                                                 * * * * * * * * * * * * * * * * * *
 29
           2.13129
                         1.07525
                                          852.05
                                                       12957
 30
           2.01220
                         0.43865
                                          804.44
                                                       13113
 31
           1.59388
                         1.05014
                                          637.21
                                                       13661
 32
           0.04046
                         0.80271
                                                       15696
                                            16.17
 33
           0.00840
                         2.99922
                                             3.36
                                                       15738
 34
           0.00000
                        66.66846
                                             0.00
                                                       15749
 35
          -0.00840
                         2.66802
                                            -3.36
                                                       15760
 36
          -0.04198
                         0.48176
                                          -16.78
                                                       15804
```

```
14-DEC-87 11:30:55
OBNUC 1H
OBFRG 399.65 MHz
OBSET 120.00 kHz
OBFIN 14811.2 Hz
PW1 3.0 us
PW2 33.0 us
```

PLLS

14-961-87 11:28:24

PEAK

MXINT

RESOL

36

Hz

995927400

0.3100000

```
0.0000000 ppm
EXREF
              -2304.08
                        Hz
OBS
ABOBS 399784.8000000 KHz
                    14
NGAIN
COMNT #5286/GREGORY/3/CDCL3/1H/C5/+25DEG/SGNON/SCH
               PPM
NO.
                          INT(%)
                                       FREQ(Hz)
                                                  POSITION
                                                             BAR GRAPH
                                                              +++++ C4213
           7.26103
                       28.23798
  1
                                        2902.83
                                                       6230
  2
           6.03813
                        1.36029
                                        2413.94
                                                       7832
           5.94806
  3
                        7.04529
                                        2377.93
                                                       7950
           5.91523
                        1.98020
                                        2364.81
                                                       7993
  5
           3.66410
                       14.72423
                                        1464.84
                                                      10942
           3.58090
                       13.83143
                                        1431.58
                                                      11051
  7
           2.70457
                        2.49464
                                        1081.24
                                                      12199
  8
           2.17327
                        0.90036
                                         868.84
                                                      12895
  9
           1.54885
                        3.20507
                                         619,20
                                                      13713
 10
           1.53969
                        1.82560
                                          615.54
                                                      13725
 11
           1.52213
                        1.07773
                                          608.52
                                                      13748
 12
           1.50305
                        3.15426
                                          600.89
                                                      13773
 13
           1.32900
                        0.85171
                                          531.31
                                                      14001
                                          522.77
 14
           1.30763
                        1.28600
                                                      14029
 15
           1.28931
                        1.61713
                                          515.44
                                                      14053
 16
           1.27099
                        1.83422
                                          508.12
                                                      14077
 17
           1.25266
                         1.81832
                                          500.79
                                                      14101
 18
           1.22137
                        0.63397
                                          488 28
                                                      14142
 19
           1.17022
                         1.03425
                                          467.83
                                                      14209
 20
           1.15343
                        1.58423
                                          461.12
                                                      14231
 21
           1.13129
                        1.40567
                                          452.27
                                                      14260
 22
           1.10457
                        0.71636
                                          441.59
                                                      14295
 23
           0.89389
                         3.47061
                                          357.36
                                                      14571
                         2.23065
 24
           0.88320
                                          353.09
                                                      14585
  ز
           0.87557
                         8.55405
                                          350.04
                                                      14595
                                                                   PETROL ETHER
 26
           0.87099
                       13.49026
                                          348.21
                                                      14601
 27
           0.85496
                       15.06149
                                          341.80
                                                      14622
 28
           0.85038
                         5,16451
                                          339.97
                                                      14628
 29
           0.84427
                         4.46447
                                          337.52
                                                      14636
 30
           0.83816
                         3.86436
                                          305.08
                                                      14644
 31
           0.83358
                         4.44974
                                          333.25
                                                      14650
 32
           0.82748
                         3.87931
                                          330.81
                                                      14658
 33
           0.06870
                         1.10554
                                           27.47
                                                      15652
 34
           0.03435
                         1.06598
                                           13.73
                                                      15697
 35
           0.02214
                         0.74910
                                            8.85
                                                      15713
 36
           0.00687
                         5.44087
                                            2.75
                                                      15733
 37
           0.00000
                       100.00000
                                            0.00
                                                      15742
 38
          -0.00840
                         4.22455
                                           -3.36
                                                      15753
 39
          -0.01985
                         1.91707
                                           -7.93
                                                      15768
 40
          -0.03511
                         1.43835
                                          -14.04
                                                      15788
```

```
14-DEC-87 12:13:12

OBNUC 1H

OBFRO 399.65 MHz

OBSET 120.00 kHz

OBFIN 14811.2 Hz

PW1 3.0 Us
```

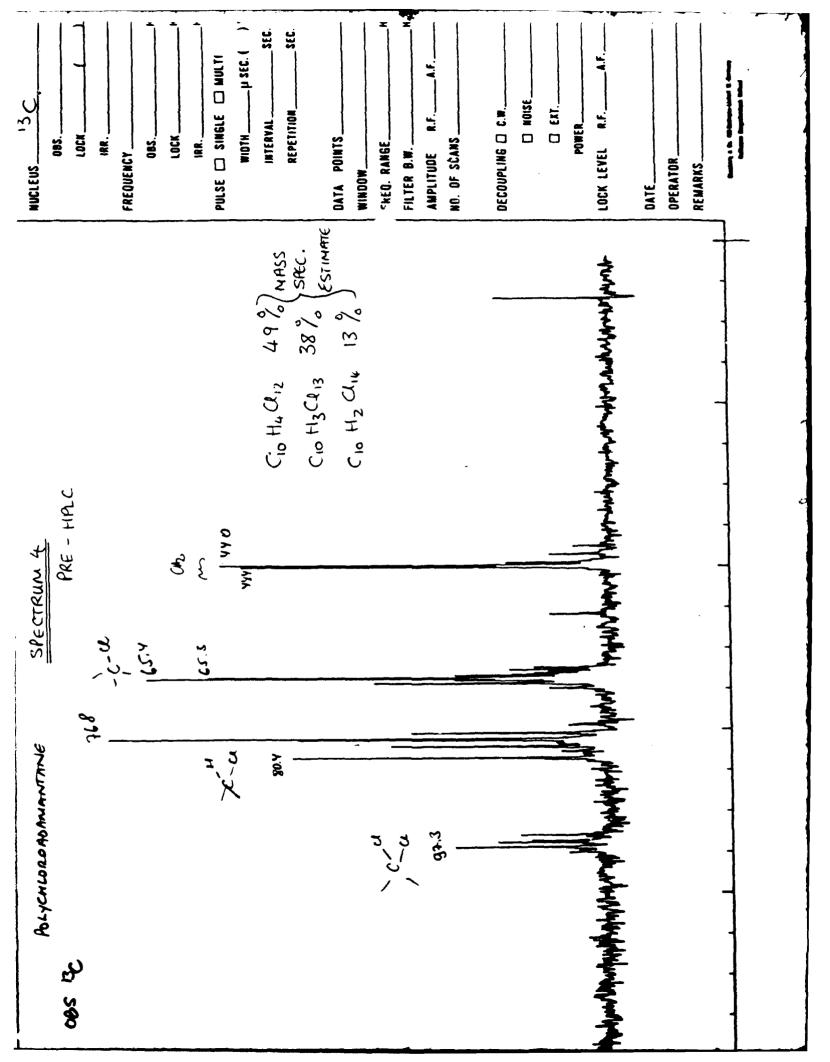
33 O He

PW2

14-DEC-87 12:10:41

PEAK MXINT

RESOL


RESOL

40

0.0007754 PPM

Hz

666973700 0.3100000

9 ----

×,

70+MOVE:70 +DISP:H+MOVE:66 +DISP 76.959 : 77 REFERENCE (PPM) = 6250,00 HZ+CONST 66 TO NO. 5.89 FREO.RANGE 6250.00 HZ 248.508PPM FESDLUTION 0.76 HZ 707HZ 707HZ 2.89 ZERD+ 1.3105 SEC : 625: C1 = 200 SCANS : C0_? +QUIK:5 TYPE 1 : R-RATE SIGNAL FILE IS FROM NO. H+DISP:H\$STOR+REDUC

								くろいまな	•			O CONTRACTOS)	Kacket (extends)	,				K ₂ CH ₂	•	
		(****	*** / R. CCL.	7 - 7	↑	******	•••••	••••••	•••••••	••••	•••••	\	A **********		••••	•	(*******	~	→	•
HEIGHT (%)	-18.000	16.370	11.902	Ø. 148	9.515	33,223	23.097	35,695	52.206	20.893	24.751	16.224	48.177	41.610	16.120	10.486	38.289	40.474	10.687	11.933
FPA	231,481	97.253	96.374	96.068	94.976	86.386	78.265	76.991	76.838	75.717	66.374	65,735	65.432	65.310	64.857	63.854	44.350	44.015	43.530	-7.129
FREO	5801.99	0445.98	2423.85	415.	2388.76	621.	1968.38	936.	33.	400	999	553.	545	54 R.	1631.16	1605.98	~	1107.02	1094.81	
POSIT	O	1544	4500	4530	4566	5047	5117	5128	5164	5201	5509	5530	5540	0.044	5559	5500	6835	5246	5262	2862
G		N	က	4	i,	۵.	٨	00	σ.	10	= 1	12	13	14	10	91	17	38	J.	20

+DISP:V+_? +MOVE:66 +CONST

C1 = 200 SCANS: 2000 C +ACCUM CONTINUE 93.3

DAIE ILMED (S)